organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4,6-Dibenzoylisophthalic acid pyridine disolvate

Shan Liu, Peng Jiang, Shui-Ping Deng and Hong-Jun Zhu*

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China Correspondence e-mail: zhuhj@njut.edu.cn

Received 29 May 2007; accepted 31 May 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.064; wR factor = 0.197; data-to-parameter ratio = 14.7.

The asymmetric unit of the title compound, $C_{22}H_{14}O_{6}$. 2C₅H₅N, contains one 4,6-dibenzoylisophthalic acid (DBIA) and two pyridine molecules. The dihedral angles between the terminal phenyl rings and the central benzene ring are 73.3 (2) and 105.0 (3)°. In the crystal structure, there is an intramolecular C-H···O hydrogen bond; intermolecular O-H···N and $C-H \cdots O$ hydrogen bonds link the molecules to form a three-dimensional framework.

Related literature

For general background, see: Tonzola et al. (2003); Kolosov et al. (2002); Antoniadis et al. (1994); Allen et al. (1987). For related literature, see: Liu, Heng et al. (2006); Liu, Ji et al. (2006).

Experimental

Crystal data

$C_{22}H_{14}O_{6} \cdot 2C_{5}H_{5}N$	a = 10.257 (2) Å
$M_r = 532.53$	b = 11.228 (2) Å
Triclinic, P1	c = 12.109 (2) Å

$\alpha = 101.37 \ (3)^{\circ}$	
$\beta = 97.17 \ (3)^{\circ}$	
$\gamma = 90.32 \ (3)^{\circ}$	
$V = 1355.8 (5) \text{ Å}^3$	
Z = 2	

Data collection

Enraf-Nonius CAD-4	5322 independent reflections
diffractometer	3172 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.026$
(North et al., 1968)	3 standard reflections
$T_{\min} = 0.935, T_{\max} = 0.962$	frequency: 120 min
5635 measured reflections	intensity decay: 1%

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

 $0.40 \times 0.30 \times 0.20$ mm

T = 298 (2) K

Refinement R

$R[F^2 > 2\sigma(F^2)] = 0.064$	361 parameters
$wR(F^2) = 0.197$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$
5322 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2B\cdots N2$	0.82	1.81	2.630 (4)	173
$O4-H4A\cdots N1^{i}$	0.82	1.75	2.544 (4)	163
C10−H10A····O4	0.93	2.38	2.711 (4)	101
$C22 - H22A \cdots O4^{ii}$	0.93	2.44	3.241 (4)	144
C31-H31A···O1	0.93	2.56	3.209 (6)	127

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x, -y, -z + 1.

Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2264).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Antoniadis, H., Hsieh, B. R., Abkowitz, M. A., Jenekhe, S. A. & Stolka, M. (1994). Svnth. Met. 62, 265-271.
- Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Enraf-Nonius (1985). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Kolosov, S., Adamovich, V., Djurovich, P., Thompson, M. E. & Adachi, C.
- (2002). J. Am. Chem. Soc. 124, 9945-9954.
- Liu, S., Heng, J. & Zhu, H.-J. (2006). Acta Cryst. E62, 04631-04633.
- Liu, S., Ji, J.-X., Wang, D.-D. & Zhu, H.-J. (2006). Acta Cryst. E62, o1387o1389.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tonzola, C. J., Alam, M. M., Kaminsky, W. & Jenekhe, S. A. (2003). J. Am. Chem. Soc. 125, 13548-13558.

Acta Cryst. (2007). E63, o3110 [doi:10.1107/S1600536807026657]

4,6-Dibenzoylisophthalic acid pyridine disolvate

S. Liu, P. Jiang, S.-P. Deng and H.-J. Zhu

Comment

4,6-Dibenzoylisophthalic acid (DBIA) and its isomer 2,5-Dibenzoylterephthalic acid (DBTA), can be utilized to synthesize organic semiconductors and conjugated polymers (Tonzola *et al.*, 2003), which are of wide current interest for applications in electronic and optoelectronic devices including light-emitting diodes (Kolosov *et al.*, 2002), thin film transistors, and photovoltaic cells (Antoniadis *et al.*, 1994). DBTA tetrasolvate has been reported recently (Liu, Heng *et al.*, 2006), and we herein report the crystal structure of the title compound, (I), which is of interest to us in the field of organic semiconductors.

The asymmetric unit of the title compound, (I), contains one DBIA and two pyridine molecules (Fig. 1), in which the bond lengths and angles are within normal ranges (Allen *et al.*, 1987).

Rings A (C1–C6), B (C8–C13) and C (C17–C22) are, of course, planar and the dihedral angles between them are $A/B = 73.3 (2)^{\circ}$ and $B/C = 105.0 (3)^{\circ}$.

In the crystal structure, intra- and intermolecular O—H···N and C—H···O hydrogen bonds (Table 1) link the molecules to form a three dimensional framework (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

The title compound, (I) was prepared by the literature method (Liu, Ji *et al.*, 2006). The crystals were obtained by dissolving DBIA (1.5 g, 4.0 mmol) in pyridine (50 ml) and evaporating the solvent slowly at room temperature for about 15 d.

Refinement

H atoms were positioned geometrically, with O—H = 0.82 Å (for OH) and C—H = 0.93 Å for aromatic H atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xUeq(C,O)$, where x = 1.5 for OH H, and x = 1.2 for aromatic H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen bonds are shown as dashed lines.

Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.

4,6-Dibenzoylisophthalic acid pyridine disolvate

Crystal data	
$C_{22}H_{14}O_{6}\cdot 2C_{5}H_{5}N$	Z = 2
$M_r = 532.53$	$F_{000} = 556$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.304 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 10.257 (2) Å	Cell parameters from 25 reflections
b = 11.228 (2) Å	$\theta = 10 - 13^{\circ}$
c = 12.109 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 101.37 \ (3)^{\circ}$	T = 298 (2) K
$\beta = 97.17 \ (3)^{\circ}$	Plate, colorless
$\gamma = 90.32 \ (3)^{\circ}$	$0.40 \times 0.30 \times 0.20 \text{ mm}$
$V = 1355.8 (5) \text{ Å}^3$	

Data collection

Enraf-Nonius CAD-4 diffractometer	$R_{\rm int} = 0.026$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 26.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.7^{\circ}$
T = 298(2) K	$h = -12 \rightarrow 12$
$\omega/2\theta$ scans	$k = -13 \rightarrow 13$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = 0 \rightarrow 14$
$T_{\min} = 0.935, T_{\max} = 0.962$	3 standard reflections
5635 measured reflections	every 120 min
5322 independent reflections	intensity decay: 1%
3172 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.064$	H-atom parameters constrained
$wR(F^2) = 0.197$	$w = 1/[\sigma^2(F_0^2) + (0.06P)^2 + 1.5P]$

	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{max} < 0.001$
5322 reflections	$\Delta\rho_{max} = 0.29 \text{ e } \text{\AA}^{-3}$
361 parameters	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	-0.3679 (3)	-0.3363 (2)	0.2543 (2)	0.0784 (9)
O2	-0.4109 (3)	-0.1895 (2)	0.3963 (2)	0.0687 (8)
H2B	-0.4594	-0.2424	0.4085	0.103*
O3	-0.2067 (3)	-0.3431 (2)	0.0336 (2)	0.0741 (8)
O4	-0.1013 (3)	0.1444 (2)	0.5193 (2)	0.0730 (8)
H4A	-0.0724	0.2065	0.5636	0.109*
O5	-0.0046 (3)	0.2261 (2)	0.3967 (2)	0.0708 (8)
O6	-0.0130 (3)	0.1521 (2)	0.1154 (2)	0.0663 (7)
N1	0.0531 (3)	0.6687 (3)	0.3228 (3)	0.0623 (8)
N2	-0.5820 (3)	-0.3480 (3)	0.4331 (3)	0.0675 (9)
C1	-0.6799 (4)	-0.2681 (4)	-0.0675 (4)	0.0854 (14)
H1A	-0.7676	-0.2688	-0.0986	0.102*
C2	-0.6243 (5)	-0.1657 (4)	0.0075 (4)	0.0809 (13)
H2A	-0.6742	-0.0974	0.0258	0.097*
C3	-0.4958 (4)	-0.1652 (3)	0.0546 (3)	0.0649 (10)
H3A	-0.4595	-0.0964	0.1054	0.078*
C4	-0.4187 (3)	-0.2652 (3)	0.0279 (3)	0.0490 (8)
C5	-0.4770 (4)	-0.3669 (3)	-0.0493 (3)	0.0587 (9)
H5A	-0.4274	-0.4350	-0.0695	0.070*
C6	-0.6067 (5)	-0.3673 (4)	-0.0955 (4)	0.0779 (13)
H6A	-0.6443	-0.4357	-0.1460	0.093*
C7	-0.2795 (4)	-0.2672 (3)	0.0743 (3)	0.0503 (8)
C8	-0.2242 (3)	-0.1645 (3)	0.1685 (3)	0.0466 (8)
C9	-0.2594 (3)	-0.1451 (3)	0.2787 (3)	0.0458 (8)
C10	-0.2073 (3)	-0.0454 (3)	0.3578 (3)	0.0446 (8)
H10A	-0.2332	-0.0317	0.4300	0.054*

C11	-0.1176 (3)	0.0352 (3)	0.3330 (2)	0.0434 (7)
C12	-0.0790 (3)	0.0147 (3)	0.2245 (3)	0.0459 (8)
C13	-0.1306 (3)	-0.0853 (3)	0.1442 (3)	0.0476 (8)
H13A	-0.1025	-0.1001	0.0727	0.057*
C14	-0.3510 (4)	-0.2336 (3)	0.3083 (3)	0.0527 (9)
C15	-0.0682 (3)	0.1453 (3)	0.4200 (3)	0.0458 (8)
C16	0.0225 (4)	0.0921 (3)	0.1880 (3)	0.0485 (8)
C17	0.1639 (3)	0.0816 (3)	0.2292 (3)	0.0435 (7)
C18	0.2573 (4)	0.1473 (3)	0.1907 (3)	0.0542 (9)
H18A	0.2316	0.1989	0.1411	0.065*
C19	0.3880 (4)	0.1357 (4)	0.2264 (3)	0.0645 (10)
H19A	0.4508	0.1799	0.2008	0.077*
C20	0.4278 (4)	0.0590 (4)	0.3000 (3)	0.0675 (11)
H20A	0.5166	0.0517	0.3238	0.081*
C21	0.3347 (4)	-0.0057 (4)	0.3371 (3)	0.0655 (10)
H21A	0.3608	-0.0576	0.3863	0.079*
C22	0.2039 (4)	0.0046 (3)	0.3030 (3)	0.0576 (9)
H22A	0.1418	-0.0399	0.3291	0.069*
C23	-0.0048 (5)	0.5690 (4)	0.3389 (4)	0.0759 (12)
H23A	-0.0385	0.5708	0.4070	0.091*
C24	0.1015 (5)	0.6645 (4)	0.2258 (3)	0.0703 (11)
H24A	0.1399	0.7350	0.2131	0.084*
C25	0.0979 (5)	0.5611 (4)	0.1431 (3)	0.0753 (12)
H25A	0.1363	0.5600	0.0773	0.090*
C26	0.0355 (5)	0.4595 (4)	0.1612 (4)	0.0797 (13)
H26A	0.0295	0.3883	0.1062	0.096*
C27	-0.0172 (5)	0.4627 (4)	0.2588 (4)	0.0798 (12)
H27A	-0.0607	0.3946	0.2713	0.096*
C28	-0.7248 (6)	-0.5425 (6)	0.4630 (7)	0.116 (2)
H28A	-0.7713	-0.6101	0.4730	0.139*
C29	-0.7039 (6)	-0.4422 (7)	0.5502 (5)	0.122 (2)
H29A	-0.7366	-0.4389	0.6190	0.146*
C30	-0.6308 (5)	-0.3460 (5)	0.5291 (4)	0.0898 (14)
H30A	-0.6156	-0.2766	0.5859	0.108*
C31	-0.6069 (5)	-0.4462 (4)	0.3544 (4)	0.0883 (14)
H31A	-0.5727	-0.4502	0.2861	0.106*
C32	-0.6802 (5)	-0.5432 (5)	0.3672 (6)	0.1088 (18)
H32A	-0.6982	-0.6095	0.3075	0.131*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
01	0.118 (2)	0.0478 (15)	0.0708 (18)	-0.0187 (15)	0.0389 (17)	0.0001 (13)
O2	0.0842 (19)	0.0604 (16)	0.0631 (16)	-0.0150 (14)	0.0312 (14)	0.0028 (13)
O3	0.0728 (18)	0.0655 (17)	0.0730 (18)	0.0103 (14)	0.0108 (14)	-0.0139 (14)
O4	0.119 (2)	0.0563 (16)	0.0420 (14)	-0.0208 (15)	0.0247 (14)	-0.0031 (12)
O5	0.103 (2)	0.0528 (15)	0.0559 (15)	-0.0217 (15)	0.0264 (15)	0.0002 (12)
O6	0.0717 (18)	0.0716 (17)	0.0627 (16)	-0.0037 (14)	0.0056 (13)	0.0328 (14)

N1	0.079 (2)	0.0567 (18)	0.0489 (17)	-0.0001 (16)	0.0137 (15)	0.0009 (14)
N2	0.068 (2)	0.067 (2)	0.069 (2)	-0.0097 (17)	0.0082 (17)	0.0155 (17)
C1	0.060 (3)	0.083 (3)	0.099 (4)	-0.005 (2)	-0.010 (2)	-0.003 (3)
C2	0.074 (3)	0.072 (3)	0.087 (3)	0.011 (2)	0.003 (2)	-0.003 (2)
C3	0.065 (3)	0.054 (2)	0.067 (2)	0.0021 (19)	0.008 (2)	-0.0087 (18)
C4	0.058 (2)	0.0468 (19)	0.0415 (18)	-0.0025 (16)	0.0085 (15)	0.0059 (15)
C5	0.071 (3)	0.047 (2)	0.053 (2)	-0.0035 (18)	0.0022 (18)	0.0011 (16)
C6	0.081 (3)	0.059 (3)	0.082 (3)	-0.016 (2)	-0.008 (2)	-0.002 (2)
C7	0.065 (2)	0.0440 (19)	0.0432 (18)	-0.0019 (17)	0.0182 (17)	0.0043 (15)
C8	0.057 (2)	0.0430 (18)	0.0377 (17)	-0.0001 (15)	0.0048 (15)	0.0037 (14)
C9	0.053 (2)	0.0407 (17)	0.0435 (18)	0.0023 (15)	0.0080 (15)	0.0058 (14)
C10	0.0514 (19)	0.0470 (18)	0.0356 (16)	-0.0001 (15)	0.0090 (14)	0.0066 (14)
C11	0.054 (2)	0.0428 (17)	0.0339 (16)	0.0024 (15)	0.0096 (14)	0.0062 (13)
C12	0.056 (2)	0.0410 (17)	0.0415 (17)	0.0003 (15)	0.0100 (15)	0.0080 (14)
C13	0.052 (2)	0.053 (2)	0.0372 (17)	0.0005 (16)	0.0118 (14)	0.0029 (15)
C14	0.065 (2)	0.049 (2)	0.0455 (19)	-0.0018 (17)	0.0131 (17)	0.0087 (16)
C15	0.055 (2)	0.0478 (19)	0.0354 (17)	-0.0005 (16)	0.0102 (14)	0.0084 (14)
C16	0.067 (2)	0.0433 (18)	0.0349 (17)	-0.0004 (16)	0.0075 (15)	0.0074 (14)
C17	0.0504 (19)	0.0414 (17)	0.0373 (16)	-0.0013 (14)	0.0079 (14)	0.0030 (13)
C18	0.063 (2)	0.051 (2)	0.048 (2)	-0.0081 (17)	0.0066 (17)	0.0084 (16)
C19	0.062 (3)	0.064 (2)	0.067 (2)	-0.0138 (19)	0.017 (2)	0.006 (2)
C20	0.060 (2)	0.070 (3)	0.068 (3)	0.001 (2)	0.013 (2)	0.002 (2)
C21	0.074 (3)	0.069 (3)	0.056 (2)	0.013 (2)	0.008 (2)	0.0183 (19)
C22	0.066 (3)	0.054 (2)	0.058 (2)	0.0003 (18)	0.0165 (18)	0.0176 (18)
C23	0.093 (3)	0.074 (3)	0.059 (2)	-0.010 (2)	0.018 (2)	0.004 (2)
C24	0.105 (3)	0.055 (2)	0.053 (2)	0.001 (2)	0.013 (2)	0.0112 (17)
C25	0.107 (3)	0.068 (3)	0.048 (2)	0.003 (2)	0.016 (2)	0.0007 (18)
C26	0.105 (3)	0.055 (2)	0.067 (3)	0.003 (2)	0.003 (2)	-0.009 (2)
C27	0.091 (3)	0.060 (2)	0.084 (3)	-0.012 (2)	0.008 (2)	0.007 (2)
C28	0.097 (4)	0.097 (4)	0.167 (5)	-0.015 (3)	0.007 (4)	0.066 (4)
C29	0.100 (4)	0.170 (5)	0.105 (4)	-0.043 (4)	0.011 (3)	0.055 (4)
C30	0.080 (3)	0.121 (4)	0.066 (3)	-0.027 (3)	0.008 (2)	0.014 (3)
C31	0.077 (3)	0.084 (3)	0.096 (3)	-0.015 (2)	0.016 (3)	-0.004 (3)
C32	0.086 (4)	0.074 (3)	0.155 (5)	-0.007 (3)	0.010 (3)	-0.002(3)

Geometric parameters (Å, °)

O1—C14	1.208 (4)	C17—C18	1.386 (4)
O2—C14	1.310 (4)	C17—C22	1.390 (5)
O2—H2B	0.8200	C18—C19	1.371 (5)
O3—C7	1.208 (4)	C18—H18A	0.9300
O4—C15	1.292 (4)	C19—C20	1.384 (6)
O4—H4A	0.8200	С19—Н19А	0.9300
O5—C15	1.212 (4)	C20—C21	1.368 (5)
O6—C16	1.231 (4)	C20—H20A	0.9300
C1—C6	1.358 (6)	C21—C22	1.365 (5)
C1—C2	1.387 (6)	C21—H21A	0.9300
C1—H1A	0.9300	C22—H22A	0.9300
C2—C3	1.369 (6)	N1—C24	1.324 (5)

C2—H2A	0.9300	N1—C23	1.324 (5)
C3—C4	1.386 (5)	N2—C31	1.308 (5)
С3—НЗА	0.9300	N2—C30	1.318 (5)
C4—C5	1.403 (5)	C23—C27	1.376 (6)
C4—C7	1.470 (5)	С23—Н23А	0.9300
C5—C6	1.377 (6)	C24—C25	1.372 (5)
С5—Н5А	0.9300	C24—H24A	0.9300
С6—Н6А	0.9300	C25—C26	1.373 (6)
С7—С8	1.506 (4)	C25—H25A	0.9300
C8—C9	1.402 (4)	C26—C27	1.354 (6)
C8—C13	1.401 (4)	C26—H26A	0.9300
C9—C10	1.378 (4)	С27—Н27А	0.9300
C9—C14	1.487 (5)	C28—C32	1.298 (8)
C10—C11	1.386 (4)	C28—C29	1.379 (8)
C10—H10A	0.9300	C28—H28A	0.9300
C11—C12	1.395 (4)	C29—C30	1.392 (7)
C11—C15	1.497 (4)	С29—Н29А	0.9300
C12—C13	1.386 (4)	C30—H30A	0.9300
C12—C16	1.514 (5)	C31—C32	1.364 (7)
C13—H13A	0.9300	C31—H31A	0.9300
C16—C17	1.487 (5)	C32—H32A	0.9300
C14—O2—H2B	109.5	C18—C17—C22	119.6 (3)
C15—O4—H4A	109.5	C18—C17—C16	119.2 (3)
C6—C1—C2	120.2 (4)	C22—C17—C16	121.2 (3)
C6—C1—H1A	119.9	C19—C18—C17	119.4 (3)
C2—C1—H1A	119.9	C19—C18—H18A	120.3
C3—C2—C1	119.9 (4)	C17—C18—H18A	120.3
C3—C2—H2A	120.0	C18—C19—C20	121.0 (4)
C1—C2—H2A	120.0	С18—С19—Н19А	119.5
C2—C3—C4	121.2 (4)	C20—C19—H19A	119.5
С2—С3—Н3А	119.4	C21—C20—C19	119.1 (4)
С4—С3—Н3А	119.4	C21—C20—H20A	120.4
C5—C4—C3	117.7 (3)	С19—С20—Н20А	120.4
C5—C4—C7	119.4 (3)	C22—C21—C20	121.0 (4)
C3—C4—C7	122.9 (3)	C22—C21—H21A	119.5
C6—C5—C4	120.9 (4)	C20-C21-H21A	119.5
С6—С5—Н5А	119.6	C21—C22—C17	119.9 (3)
C4—C5—H5A	119.6	C21—C22—H22A	120.0
C1—C6—C5	120.2 (4)	C17—C22—H22A	120.0
С1—С6—Н6А	119.9	C24—N1—C23	118.1 (3)
С5—С6—Н6А	119.9	C31—N2—C30	116.7 (4)
O3—C7—C4	122.1 (3)	N1-C23-C27	122.6 (4)
O3—C7—C8	119.3 (3)	N1—C23—H23A	118.7
C4—C7—C8	118.3 (3)	C27—C23—H23A	118.7
C9—C8—C13	118.6 (3)	N1—C24—C25	123.2 (4)
C9—C8—C7	123.8 (3)	N1—C24—H24A	118.4
C13—C8—C7	117.6 (3)	C25—C24—H24A	118.4
C10—C9—C8	119.4 (3)	C24—C25—C26	117.5 (4)
C10—C9—C14	121.3 (3)	C24—C25—H25A	121.2

C8—C9—C14	119.3 (3)	C26—C25—H25A	121.2
C9—C10—C11	122.1 (3)	C27—C26—C25	120.2 (4)
C9—C10—H10A	119.0	С27—С26—Н26А	119.9
C11-C10-H10A	119.0	C25—C26—H26A	119.9
C12-C11-C10	118.9 (3)	C26—C27—C23	118.4 (4)
C12—C11—C15	120.8 (3)	С26—С27—Н27А	120.8
C10-C11-C15	120.2 (3)	С23—С27—Н27А	120.8
C11—C12—C13	119.6 (3)	C32—C28—C29	120.5 (6)
C11—C12—C16	124.3 (3)	C32—C28—H28A	119.8
C13—C12—C16	116.0 (3)	C29—C28—H28A	119.8
C12—C13—C8	121.3 (3)	C30—C29—C28	116.0 (6)
C12—C13—H13A	119.4	С30—С29—Н29А	122.0
C8—C13—H13A	119.4	С28—С29—Н29А	122.0
O1—C14—O2	124.0 (3)	N2-C30-C29	123.6 (5)
O1—C14—C9	122.0 (3)	N2-C30-H30A	118.2
O2—C14—C9	114.0 (3)	С29—С30—Н30А	118.2
O5—C15—O4	124.8 (3)	N2—C31—C32	123.4 (5)
O5—C15—C11	122.0 (3)	N2—C31—H31A	118.3
O4—C15—C11	113.2 (3)	С32—С31—Н31А	118.3
O6—C16—C17	121.5 (3)	C28—C32—C31	119.8 (6)
O6—C16—C12	118.8 (3)	C28—C32—H32A	120.1
C17—C16—C12	119.2 (3)	C31—C32—H32A	120.1

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O2—H2B···N2	0.82	1.81	2.630 (4)	173
O4—H4A…N1 ⁱ	0.82	1.75	2.544 (4)	163
C10—H10A…O4	0.93	2.38	2.711 (4)	101
C22—H22A····O4 ⁱⁱ	0.93	2.44	3.241 (4)	144
C31—H31A…O1	0.93	2.56	3.209 (6)	127
$(1, \dots, 1, \dots, 1, \dots, 1) = (1, \dots, 1)$. 1			

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z+1.

